Thursday, August 30, 2007

Wireless Communication Equipment..

A big market exists for wireless applications today. Companies are offering a wide range of radio modules for wireless applications, and it is difficult to choose between them. For a change, we look into some of the radio interface modules which are available in the market. The key factors that are considered are the power consumption, integration ease and range, features and finally the usability or functionality. Some are suitable for industrial applications also. A variety of antenna options are also available for the products. A list of companies which have products which are worth a look are listed in the following sections. Typical products of some companies are given below for a fast look up.

Aerocomm is one company to watch out for if you are looking for the fastest way to go wireless, since they seem to have a wide range of products. The company claims to offer compact transceivers, which are ready to integrate, and offers technology that ensures reliable communication even in frequency-polluted areas. The industrial and commercial range includes 2.4GHz/900MHz RF transceiver modules and the Zigbee transceiver module. The ZigBee transceiver (ZB2430) is an SoC compliant module. This is available in two versions to suit varying requirements. The ZB2430 and ZB2430-100 are two where the latter is offers an extended communication capability. The ZB2430 uses 2.4GHz ISM band, so OEMs looking for standardization can use it. The module comes as either full-function devices or reduced function devises.

Data Hunter offers an OEM WLAN serial server module, typically targeted at portable, low cost equipments. It supports the major network/protocol standards like TCP/IP, UDP/IP, HTTP, ARP, SNMP etc. It also uses the 2.4GHz band typically upto 2.48GHz. It has a very useful power-save mode, which is helpful in low-power applications. It is named 802.11b "Mini-b" module as given in their website.

Air-wave offers AWM630, a new range of wireless modules operating on again, the 2.4GHz ISM band. The company claims that the devices are FCC compliant, so a global market is the target. Typical applications for the AWM630 may be for professional or domestic sound/video transmissions, security systems, or public information systems. The video compatibility for both PAL and NTSC is present in the same module. A stereo audio is also supported. The AWM630 series is RoHS compliant, that is what the company claims. The prices are very competitive and the modules are available through saelig.

Conexant is another company which offers a single chip 802.11b WLAN compatible device for small, embedded portable applications. The company offers CX53113, a low power , small form factor module which is suitable for mobile applications. It also operates in the 2.4GHz ISM band, supporting data rates up and above 6Mbps.All the above products are targeted at different end-markets but have a lot of things in common. It is just a pointer as to where to look for if you are intending to cut cables from your application and intend to do it fast!!!

Monday, August 13, 2007

On WiMax Architecture

WiMAX Architecture
The IEEE only defined the Physical (PHY) and Media Access Control (MAC) layers in 802.16. This approach has worked well for technologies such as Ethernet and WiFi, which rely on other bodies such as the IETF (Internet Engineering Task Force) to set the standards for higher layer protocols such as TCP/IP, SIP, VoIP and IPSec. In the mobile wireless world, standards bodies such as 3GPP and 3GPP2 set standards over a wide range of interfaces and protocols because they require not only airlink interoperability, but also inter-vendor inter-network interoperability for roaming, multi-vendor access networks, and inter-company billing. Vendors and operators have recognized this issue, and have formed additional working groups to develop standard network reference models for open inter-network interfaces. Two of these are the WiMAX Forum’s Network Working Group, which is focused on creating higher-level networking specifications for fixed, nomadic, portable and mobile WiMAX systems beyond what is defined in the IEEE 802.16 standard, and Service Provider Working Group which helps write requirements and prioritizes them to help drive the work of Network WG.

The Mobile WiMAX End-to-End Network Architecture is based an All-IP platform, all packet technology with no legacy circuit telephony. It offers the advantage of reduced total cost of ownership during the lifecycle of a WiMAX network deployment. The use of All-IP means that a common network core can be used, without the need to maintain both packet and circuit core networks, with all the overhead that goes with it. A further benefit of All-IP is that it places the network on the performance growth curve of general purpose processors and computing devices, often termed “Moore’s Law”. Advances in computer processing occurs much faster than advances in telecommunications equipment because general purpose hardware is not limited to telecommunications equipment cycles, which tend to be long and cumbersome. The end result is a network that continually performs at ever higher capital and operational efficiency, and takes advantage of 3rd party developments from the Internet community. This results in lower cost, high scalability, and rapid deployment since the networking functionality is all primarily software-based services.In order to deploy successful and operational commercial systems, there is need for support beyond 802.16 (PHY/MAC) air interface specifications. Chief among them is the need to support a core set of networking functions as part of the overall End-to-End WiMAX system architecture.

Before delving into some of the details of the architecture, we first note a few basic tenets that have guided the WiMAX architecture development.
1. The architecture is based on a packet-switched framework, including native procedures based on the IEEE 802.16 standard and its amendments, appropriate IETF RFCs and Ethernet standards.
2. The architecture permits decoupling of access architecture (and supported topologies) from connectivity IP service. Network elements of the connectivity system are agnostic to the IEEE 802.16 radio specifics.
3. The architecture allows modularity and flexibility to accommodate a broad range of deployment options such as:·
Small-scale to large-scale (sparse to dense radio coverage and capacity) WiMAX networks·
· Urban, suburban, and rural radio propagation environments
· Licensed and/or licensed-exempt frequency bands
· Hierarchical, flat, or mesh topologies, and their variants
· Co-existence of fixed, nomadic, portable and mobile usage models

Support for Services and Applications
The end-to-end architecture includes the support for:
a) Voice, multimedia services and other mandated regulatory services such as emergency services and lawful interception,
b) Access to a variety of independent Application Service Provider (ASP) networks in an agnostic manner,
c) Mobile telephony communications using VoIP,
d) Support interfacing with various interworking and media gateways permitting delivery of incumbent/legacy services translated over IP (for example, SMS over IP, MMS, WAP) to WiMAX access networks and
e) Support delivery of IP Broadcast and Multicast services over WiMAX access networks.

Interworking and Roaming is another key strength of the End-to-End Network Architecture with support for a number of deployment scenarios. In particular, there will be support of
a) Loosely-coupled interworking with existing wireless networks such as 3GPP and 3GPP2 or existing wireline networks such as DSL and MSO, with the interworking interface(s) based on a standard IETF suite of protocols,
b) Global roaming across WiMAX operator networks, including support for credential reuse, consistent use of AAA for accounting and billing, and consolidated/common billing and settlement,
c) A variety of user authentication credential formats such as username/password, digital certificates, Subscriber Identify Module (SIM), Universal SIM (USIM), and Removable User Identify Module (RUIM).

The ASN represents a boundary for functional interoperability with WiMAX clients, WiMAX connectivity service functions and aggregation of functions embodied by different vendors. Mapping of functional entities to logical entities within ASNs as depicted in the NRM may be performed in different ways. The WiMAX Forum is in the process of network specifications in a manner that would allow a variety of vendor implementations that are interoperable and suited for a wide diversity of deployment requirements.Connectivity Service Network (CSN) is defined as a set of network functions that provide IP connectivity services to the WiMAX subscriber(s). A CSN may comprise network elements such as routers, AAA proxy/servers, user databases and Interworking gateway devices. A CSN may be deployed as part of a Greenfield WiMAX Network Service Provider (NSP) or as part of an incumbent WiMAX NSP.

The network specifications for WiMAX-based systems are based on several basic network architecture tenets, including those listed below.Some general tenets have guided the development of Mobile WiMAX Network Architecture and include the following:
a) Provision of logical separation between such procedures and IP addressing, routing and connectivity management procedures and protocols to enable use of the access architecture primitives in standalone and inter-working deployment scenarios,
b) Support for sharing of ASN(s) of a Network Access Provider (NAP) among multiple NSPs,
c) Support of a single NSP providing service over multiple ASN(s) – managed by one or more NAPs,
d) Support for the discovery and selection of accessible NSPs by an MS or SS,
e) Support of NAPs that employ one or more ASN topologies,
f) Support of access to incumbent operator services through internetworking functions as needed,
g) Specification of open and well-defined reference points between various groups of network functional entities (within an ASN, between ASNs, between an ASN and a CSN, and between CSNs), and in particular between an MS, ASN and CSN to enable multi-vendor interoperability,
h) Support for evolution paths between the various usage models subject to reasonable technical assumptions and constraints,
i) Enabling different vendor implementations based on different combinations of functional entities on physical network entities, as long as these implementations comply with the normative protocols and procedures across applicable reference points, as defined in the network specifications and
j) Support for the most trivial scenario of a single operator deploying an ASN together with a limited set of CSN functions, so that the operator can offer basic Internet access service without consideration for roaming or interworking.

The WIMAX architecture also allows both IP and Ethernet services, in a standard mobile IP compliant network. The flexibility and interoperability supported by the WiMAX network provides operators with a multi-vendor low cost implementation of a WiMAX network even with a mixed deployment of distributed and centralized ASN’s in the network. The WiMAX network has the following major features:Security The end-to-end WiMAX Network Architecture is based on a security framework that is agnostic to the operator type and ASN topology and applies consistently across Greenfield and internetworking deployment models and usage scenarios. In particular there is support for:
a) Strong mutual device authentication between an MS and the WiMAX network, based on the IEEE 802.16 security framework,
b) All commonly deployed authentication mechanisms and authentication in home and visited operator network scenarios based on a consistent and extensible authentication framework,
c) Data integrity, replay protection, confidentiality and non-repudiation using applicable key lengths,
d) Use of MS initiated/terminated security mechanisms such as Virtual Private Networks (VPNs),
e) Standard secure IP address management mechanisms between the MS/SS and its home or visited NSP.

Mobility and Handovers
The end-to-end WiMAX Network Architecture has extensive capability to support mobility and handovers. It will:
a) Include vertical or inter-technology handovers— e.g., to Wi-Fi, 3GPP, 3GPP2, DSL, or MSO – when such capability is enabled in multi-mode MS,
b) Support IPv4 or IPv6 based mobility management. Within this framework, and as applicable, the architecture SHALL accommodate MS with multiple IP addresses and simultaneous IPv4 and IPv6 connections,
c) Support roaming between NSPs,
d) Utilize mechanisms to support seamless handovers at up to vehicular speeds— satisfying well-defined (within WiMAX Forum) bounds of service disruption.
Some of the additional capabilities in support of mobility include the support of:
i) Dynamic and static home address configurations,
ii) Dynamic assignment of the Home Agent in the service provider network as a form of route optimization, as well as in the home IP network as a form of load balancing and
iii) Dynamic assignment of the Home Agent based on policies.Scalability, Extensibility, Coverage and Operator Selection

The end-to-end WiMAX Network Architecture has extensive support for scalable, extensible operation and flexibility in operator selection. In particular, it will:
a) enable a user to manually or automatically select from available NAPs and NSPs,
b) Enable ASN and CSN system designs that easily scale upward and downward – in terms of coverage, range or capacity,
c) Accommodate a variety of ASN topologies - including hub-and-spoke, hierarchical, and/or multi-hop interconnects,
d) Accommodate a variety of backhaul links, both wireline and wireless with different latency and throughput characteristics,
e) Support incremental infrastructure deployment,
f) Support phased introduction of IP services that in turn scale with increasing number of active users and concurrent IP services per user,
g) Support the integration of base stations of varying coverage and capacity - for example, pico, micro, and macro base stations and
h) Support flexible decomposition and integration of ASN functions in ASN network deployments in order to enable use of load balancing schemes for efficient use of radio spectrum and network resources.

Additional features pertaining to manageability and performance of WiMAX Network Architecture include:
a) Support a variety of online and offline client provisioning, enrollment, and management schemes based on open, broadly deployable, IP-based, industry standards,
b) Accommodation of Over-The-Air (OTA) services for MS terminal provisioning and software upgrades, and
c) Accommodation of use of header compression/suppression and/or payload compression for efficient use of the WiMAX radio resources.

--“Mobile WiMAX – Part II: Competitive Analysis”, WiMAX Forum, February, 2006
--Hassan Yagoobi, “Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN”, Intel Technology Journal, Vol 08, August 2004.
-- Hassan Yagoobi, “Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN”, Intel Technology Journal, Vol 08, August 2004.
-- G. Nair, J. Chou, T. Madejski, K. Perycz, P. Putzolu and J. Sydir, “IEEE 802.16 Medium Access Control and Service Provisioning”, Intel Technology Journal, vol 08, August 2004.
-- “Can WiMAX Address Your Applications?”, Westech on Behalf of the WiMAX Forum, October 24, 2005